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Abstract: Alzheimer’s disease (AD) is a significant neurological disorder characterized by progressive
cognitive decline and memory loss. One essential task is understanding the molecular mechanisms
underlying brain disorders of AD. Detecting biomarkers that contribute significantly to the classifica-
tion of AD is an effective means to accomplish this essential task. However, most machine learning
methods used to detect AD biomarkers require lengthy training and are unable to rapidly and effec-
tively detect AD biomarkers. To detect biomarkers for AD accurately and efficiently, we proposed a
novel approach using the Multi-Kernel Support Vector Machine (SVM) with Apriori algorithm to
mine strongly associated feature sets from functional magnetic resonance imaging (fMRI) and gene
expression profiles. Firstly, we downloaded the imaging data and genetic data of 121 participants
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and transformed gene sequences
into labeled sequences by encoding the four types of bases (A, T, C, and G) into distinct labels.
Subsequently, we extracted the first 130 temporal sequences of brain regions and employed Pearson
correlation analysis to construct “brain region gene pairs”. The integration of these data allowed us
to explore the correlations between genes and brain regions. To improve classification accuracy and
feature selection, we applied the Apriori algorithm to the multi-kernel SVM, dynamically building
feature combinations and continuously validating classification results. By iteratively generating
frequent itemsets, we obtained important brain region gene pairs. Experimental results show the
effectiveness of our proposed approach. The Multi-Kernel SVM with Apriori model achieves an
accuracy of 92.9%, precision of 95%, and an F1 score of 95% in classifying brain region-gene pairs
within the AD–Late mild cognitive impairment (AD-LMCI) group. The amygdala, BIN1, RPN2, and
IL15 associated with AD have been identified and demonstrate potential in identifying potential
pathogenic factors of AD. The selected brain regions and associated genes may serve as valuable
biomarkers for early AD diagnosis and better understanding of the disease’s molecular mechanisms.
The integration of fMRI and gene data using the Multi-Kernel SVM–Apriori model holds great poten-
tial for advancing our knowledge of brain function and the genetic basis of neurological disorders.
This approach provides a valuable tool for neuroscientists and researchers in the field of genomics
and brain imaging studies.
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1. Introduction
1.1. Background

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is char-
acterized by a decline in cognitive abilities and memory loss [1,2]. It affects millions of
people worldwide, and the number of cases is expected to increase as the population
ages. Early detection and accurate diagnosis of AD are crucial for effective treatment and
management of the disease. Considering that changes in synaptic function occur early in
neurodegenerative processes, functional magnetic resonance imaging (fMRI) is particularly
promising for detecting early changes in brain function [3,4]. In the early diagnosis of
AD, the detection of biomarkers is crucial. The current topic lies in effectively identifying
biomarkers that contribute significantly to AD classification.

One approach to diagnosing AD is through the analysis of brain imaging data, such as
magnetic resonance imaging (MRI) and positron emission tomography (PET). The use of
machine learning algorithms, such as support vector machine (SVM), has shown promise in
accurately classifying patients with AD from healthy controls based on these imaging data.

The aim of using Apriori algorithms and support vector machine (SVM) in Alzheimer’s
disease (AD) research is to improve the accuracy of AD diagnosis and classification using
brain imaging data.

Apriori algorithms incorporate Apriori probabilities about the disease into the machine
learning algorithm to improve its performance. This Apriori knowledge can include
information about the brain regions affected by AD or the probability of a patient having
the disease based on demographic and clinical factors.

SVM is a machine learning algorithm that can be used to classify patients with AD
from healthy controls based on brain imaging data. SVM works by finding a hyperplane
that separates the data points into different classes, with the goal of maximizing the margin
between the hyperplane and the closest data points. SVM can also be used to handle
high-dimensional data, such as brain imaging data, which can be useful in AD research
where there are many variables to consider.

1.2. Related Work

Apriori algorithms and support vector machine (SVM) have various applications in
different fields. Below are some typical applications of these algorithms.

Huang et al. [5] analyzed the prevalence of multiple chronic diseases using 8477 participants
aged >45 years from the “2020 Korean Health Panel Survey” and found that cardiovascular
diseases (150%), spondylosis (143%), and diabetes (125%) were the three chronic diseases
with the highest frequency increases. Vougas et al. [6] described a novel computer screen-
ing process based on association rule mining, used to identify genes as candidate driving
factors for drug response. Liu et al. [7] proposed an association rule data mining algorithm
that combines clustering matrices and pruning strategies, reducing the number of database
scans and generating an appropriate number of candidate itemsets, significantly reducing
runtime. Hadavi et al. [8] utilized medical records spanning 5 years from 512 esophageal
cancer patients and those with related issues to create six significant association rules.
Ultimately, they discovered significant associations among age, medical history, smoking,
gender, carcinoembryonic antigen, creatinine, white blood cells, and platelets.

The SVM [9–11] has been widely used in AD classification due to its ease of use and
understanding. Lai et al. [12] proposed a method using nine machine learning algorithms,
including SVM and K Nearest Neighbor (KNN), to select Entity-relationship (ER)-related
feature genes and estimate their efficiency in early diagnosis of AD. The SVM model
achieved an Area Under Curve (AUC) of 0.879, accuracy of 0.808, recall of 0.773, and
precision of 0.809. Six genes (RNF5, UBAC2, DNAJC10, RNF103, DDX3X, and NGLY1)
were identified through this study. Yu et al. [13] proposed a method using LASSO and
Support Vector Machine Recursive Feature Elimination (SVM-RFE) analysis to screen
potential diagnostic feature genes in AD. They further tested the results in the AD brains
of a validation cohort. Through this method, they identified a total of 49 differentially
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expressed genes (DEGs). Among them, MAFF, ADCYAP1, and ZFP36L1 were determined
as diagnostic biomarkers for AD, with an AUC of 0.850 in the model, and further validated
in the validation cohort with an AUC of 0.935. Yang et al. [14] proposed a method based
on the forgeNet_SVM model for feature extraction from three molecular fusion feature
sets (ECFP6, MACCS, and RDKit). The results showed that the feature set selected by
SVM outperformed the fusion-feature set and single-feature sets. SVM demonstrated
higher accuracy in identifying compounds related to Alzheimer’s disease. Zhang et al. [15]
proposed an algorithm model that combines Support Vector Machine Recursive Feature
Elimination and Leave-One-Out Cross-Validation (SVM-RFE-LOO) for early detection of
AD. The results showed that this model reduced the number of features from 21 to 16, with
an AUC of 0.980, sensitivity of 94.0%, and specificity of 93.3%. After applying a forward
feature selection technique, Olatunji et al. [16] used SVM to construct a model for screening
AD, achieving an accuracy of 95.56%, precision of 94.70%, and recall of 97.78%.

The combination of multimodal data for feature selection has been widely used in
mild cognitive impairment (MCI) and AD classification studies. Traditional multimodal
feature selection methods have limitations, as they do not consider the correlation between
feature points and local feature space. To address this issue, Jiao et al. [17] proposed
a multimodal feature selection algorithm called Feature and Concept Fusion (FC2FS),
which fused the final features and inputted them into SVM for classification. The exper-
imental results showed that SVM has advantages in MCI and AD classification. In the
SVM model, the accuracy for AD-healthy control (HC), Late MCI-HC, Early MCI-HC,
and EMCI-LMCI were 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%,
respectively. Syaifullah et al. [18] developed a software called Brain Anatomical Analysis
Using Diffeomorphic Deformation (BAAD, BAAD HP en (shiga-med.ac.jp)), which can
diagnose AD and MCI patients using machine learning algorithms. They achieved an
accuracy of 90.5% by combining SVM for classification and the voxel-based morphometry
(VBM) technique to reduce correlated variables. Houria et al. [19] proposed a method that
combines multi-modal MRI to detect changes in white matter (WM) and gray matter (GM).
They fused features extracted from diffusion tensor imaging (DTI) and features extracted
from GM using a two-dimensional (2D) convolutional network. These features were then
input into SVM for classification in each stage. The final accuracy for AD/HC, AD/MCI,
and MCI/HC classification reached 99.79%, 99.6%, and 97.00%, respectively.

However, while Apriori algorithms and support vector machine (SVM) have shown
promising results in Alzheimer’s disease (AD) research, there are also some disadvantages
in using these algorithms. The performance of Apriori algorithms is highly dependent
on the accuracy and relevance of the Apriori knowledge used. If the Apriori knowledge
is inaccurate or incomplete, it can negatively impact the accuracy of the AD diagnosis.
It can be difficult to quantify Apriori knowledge in a meaningful way, which can make
it challenging to incorporate it into the machine learning algorithm. This can lead to
subjective decisions and biases in the algorithm. While SVM can accurately classify patients
with AD from healthy controls, the decision process of SVM relies more on mathematical
decisions than pathological processes. Therefore, how to match pathological processes with
mathematical decisions is a problem that needs to be addressed. This lack of interpretability
can make it challenging to understand the underlying mechanisms of the disease.

However, one of the challenges in using machine learning algorithms for AD diagnosis
is the limited availability of labeled data, which can hinder the performance of the models.
In this regard, Apriori knowledge or information can be incorporated into the algorithms to
improve their performance. The use of Apriori algorithms has been shown to improve the
classification accuracy of machine learning algorithms in medical imaging data analysis [6].

1.3. Proposed Framework

In this paper, we explored the use of Apriori algorithms in SVM for the classification
of AD patients and healthy controls based on brain fMRI data. We investigated the perfor-
mance of the SVM algorithm with the incorporation of Apriori algorithms in the form of
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frequent items. We also compared the performance of our proposed approach with other
SVM models for AD diagnosis. The overall description of the model is shown in Figure 1.
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Figure 1. The framework of Multi Kernel SVM–Apriori Model analysis.

Specifically, we combined the fMRI data and gene data to discriminate between AD
and healthy control (HC), or between AD and early MCI, or between AD and late MCI,
or between late MCI and HC, or between early MCI and HC. To effectively combine the
different data for classification, we used a simple but effective data fusion method and
proposed an approach based on Apriori algorithms. This approach introduced frequent
itemsets from Apriori algorithms, which could be naturally embedded into traditional SVM
classifiers, thereby enhancing the classification performance and finding the significant
biomarkers. Our findings suggest that the incorporation of Apriori algorithms could
significantly improve the performance of the SVM algorithm for AD diagnosis and could
potentially aid in the early detection and management of the disease.

2. Materials and Methods
2.1. Data Pre-Processing

Data used in our study were downloaded from the ADNI database (adni.loni.usc.cn).
The fMRI imaging of 121 participants, including 53 males and 68 females, were obtained.
The details of these participants are shown in Table 1.

We calculated the mean and standard deviation of age and years of education and
computed the correlation between gender, age, years of education, and diagnostic status.
The results indicate a significant correlation.
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Table 1. The participants’ characteristics. HC = Healthy Control; EMCI = Early Mild Cognitive
Impairment; LMCI = Late Mild Cognitive Impairment; AD = Alzheimer’s Disease; P = p-value;
EDU = Education.

Subjects HC EMCI LMCI AD P

Number 42 31 24 24 -
Gender (M/F) 19/23 12/19 14/10 8/16 <0.001

Age (Mean ± sd) 74.2 ± 6.1 72.8 ± 6.4 70.9 ± 8.3 72.0 ± 7.6 <0.001
EDU (Mean ± sd) 16.5 ± 2.7 15.8 ± 2.7 16.8 ± 2.6 15.5 ± 2.9 <0.001

All neuroimaging data were obtained using a SIEMENS 3T MRI scanner. We used the
DPARSF [20] tool to set image parameters such as timepoints, TR (repetition time), and
reference slice image to 140, 3, and 47, respectively. During the MRI scans, the stability of
the gradient magnetic field and participant adaptation required some time. As a result,
the initial few timepoints of the images tended to have more noise. To ensure the stability
of the magnetic field gradient in the scanner, the first 10 timepoints of all participants
were removed.

The preprocessing of fMRI images is shown in Figure 2. The participants’ T1 and fMRI
images were preprocessed by skull stripping, head motion correction, and normalization.
To reduce registration inaccuracies and improve signal-to-noise ratio, we utilized a smooth-
ing process with a Gaussian kernel size of 4 mm full width at half maximum (FWHM)
and a frequency range of 0.01 Hz to 0.08 Hz to remove noise from the images. Finally, the
Automated Anatomical Labeling (AAL) atlas116 template was used to define brain regions
and extract time series data from these regions [21,22].
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Figure 2. The preprocessing flowchart of fMRI. fMRI data preprocessing pipeline includes: Data
Format Conversion (from DICOM to Neuroimaging Informatics Technology Initiative), Removal
of Unstable Time Points, Slice Timing Correction, Head Motion Correction, Spatial Normalization,
Spatial Smoothing, Detrending, Filtering, and Registration.

The Illumina Genome-wide Association Study (GWAS) arrays (610-Quad, OmniEx-
press or HumanOmni2.5-4v1) (Illumina, Inc., San Diego, CA, USA) and blood genomic
DNA samples were used to genotype the participants [23]. Then, we applied PLINK
v1.9 [24] to extract single nucleotide polymorphisms (SNPs) using the following process:
(1) extracting SNPs on chromosome 1–22; (2) call rate of each SNP ≥ 95%; (3) minor allele
frequency of each SNP ≥ 5%; (4) Hardy–Weinberg equilibrium test p ≥ 1.0 × 10−6; (5) call
rate of each participant ≥ 95%. Finally, we extracted the genes with SNP number ≥ 130
and obtained 280 gens and 36,400 SNPs.

2.2. Features Fusion

In order to build fused features and detect correlations between genes and brain
regions, we converted the four types of bases within genes (such as A, T, C, and G) into
different labels (e.g., AT = 0, CG = 0, AC = 1, AG = 2, TC = 3, TG = 4) to obtain a labeled
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sequence for the genes. The first 130 temporal sequences of the brain regions were extracted,
and Pearson correlation analysis was employed to construct brain region gene pairs.

For the gene data, we selected genes with more than 130 SNPs within them and
obtained 280 genes. Then, we extracted the first 130 data points of each gene sequence. As a
result, we filtered out 280 genes and saved them as a matrix Mgene, as shown in Formula (1).

Mgene =
{

bpij
}

, i ∈ [1, 280], j ∈ [1, 130] (1)

where i represents the gene number and j represents the SNP position. The gene dataset
size is 280 × 130.

A similar process was applied to brain regions (removing the first 10 timepoints). For
the fMRI data, we calculated the brain region signals for each participant across 130 time
series using 90 brain regions from the AAL atlas. These signals were then saved as a matrix
Mroi, as shown in Formula (2).

Mroi =
{

ROIjk

}
, j ∈ [1, 130], k ∈ [1, 90] (2)

where j represents the time series of brain region and k represents the brain region. There
are a total of 121 samples, and the brain region signal dataset size is 121 × 130 × 90.

Then, we used Pearson correlation [25] analysis to integrate the brain region data and
gene data. The formula for Pearson correlation analysis was defined as Formula (3), and
the obtained matrix was shown as Formula (4).

ρMgene , Mroi=
E
(

Mgene[i, :]·Mroi[:, k]
)
− E

(
Mgene[i, :]

)
·E(Mroi[:, k])√

E
(

Mgene[i, :]2
)
− E2

(
Mgene[i, :]

)√
E
(

Mroi[:, k]2
)
− E2(Mroi[:, k])

, (3)

where ρMgene , Mroi is the feature matrix that fused brain region and gene data. E
(

Mgene[i, :]
)

is the mean of Mgene[i, :]. E(Mroi[:, k]) is the mean of Mroi[:, k]. E
(

Mgene[i, :]·Mroi[:, k]
)

is

the mean of the product of Mgene[i, :] and Mroi[:, k]. E
(

Mgene[i, :]2
)

and E
(

Mroi[:, k]2
)

are

the means of the squares of each element in Mgene[i, :] and Mroi[:, k]. E2(Mgene[i, :]
)

and
E2(Mroi[:, k]) are the squares of the mean of elements in Mgene[i, :] and Mroi[:, k].

Mgene−roi = {Genei·Roik}, i ∈ [1, 280], k ∈ [1, 90] (4)

where Genei represents the ith row vector Genei of Mgene and Roik represents the kth
column vector Roik of Mroi. Genei·Roik denotes the matrix product between the row vector
Genei from Mgene and column vector Roik from Mroi.

2.3. Multi-Kernel SVM-Apriori Model Construction

The Apriori algorithm was applied to the multi-kernel SVM, utilizing the strengths of
both algorithms.

The Multi-Kernel SVM–Apriori Model was constructed as Algorithm 1.
This involved dynamically constructing feature combinations, continuously validating

the classification results, and sequentially verifying all data to avoid random occasional
errors and ensure consistent outcomes at each step of the experiment.

Firstly, the dataset was divided into training and validation sets in a 7:3 ratio. The
initial sample set was sequentially sampled to calculate its classification performance for
feature selection, and the features obtained were validated using the leave-one-out method.
Then, the obtained features were combined in pairs, and the combined features were
checked for being frequent itemsets for further selection. This process was repeated until
no new frequent itemsets could be generated.
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Algorithm 1. The algorithm process of the Multi-Kernel SVM–Apriori Model

Input: experimental dataset {X,Y}; X is input, Y is the corresponding label (1 or −1) d, σ, ACCThre
Output: Multi-Kernel SVM–Apriori Model

1: Initialize {X, Y}, w1, w2, w3, minsupport
{X, Y} is experimental dataset,
w1, w2, w3 are the weights of three kernels Equation (7),
d is the degree of a polynomial (3),
σ is the width of the Gaussian kernel (0.005),
ACCThre is the minimum support for generating frequent itemsets Equation (9).

2: Randomly select a subset of features as {Features}trak
3: Input {Features}trak according to 7:3 training, partitioning the {X, Y} into {X, Y}train, {X, Y}valid
4: Calculate predicted values: ypred = sign (w’ × x + b)
Output: classifier: Acc = Σ (ypred == y)/length(y)
5: Input set {X, Y} to Multi-kernel SVM to obtain the Acc of all individual features and obtain the
frequent itemset L1 which satisfies Acc > ACCThre
6: For each k starting from k = 2:
Repeat
7: Generate candidate feature set Ck by connecting frequent itemsets L (k − 1)

– For each candidate feature set c in Ck:
– For each transaction t in dataset S:
– Check if c is a subset of t, and if so, increase the count of c
– Calculate Acc for each candidate feature set based on Ck

Update ACCThre = mean(ΣACC L(k − 1))
Filter to obtain frequent feature set Lk which satisfies Acc > ACCThre
Until more frequent feature sets cannot be generated, return the frequent feature set column table L
8: Finally, perform Leave-One-Out Cross-Validation for each L (k − 1) and select the feature set
with the highest ACC.

Taking the AD-HC group as an example, there were 24 samples for AD and 42 samples
for HC, making a total of 66 samples in the AD-HC group. The original dataset size was
66 × 280 × 90.

The original sample set S was defined as shown in Formula (5).

S = {xi, yi}, i ∈ [1, N] (5)

where xi represent the features in the dataset, and the value of yi was either 1 or −1,
representing the corresponding label for xi. HC was represented as “−1,” and AD was
represented as “1.” N was the total number of participants.

The training and validation sets were randomly generated from the original sample
set, and their corresponding proportions were set according to Formula (6).

Strain : Stest = 7 : 3 (6)

where Strain is the training set and Stest is the test set.
Due to the brain region gene pairs dataset being non-linearly separable in two-

dimensional space, the concept of multiple kernels was introduced. This involved map-
ping the samples from the original space to a higher-dimensional feature space, where
the samples became linearly separable. Three kernel functions were used: the linear
kernel, the polynomial kernel, and the Gaussian kernel, with weights [26] of w1:w2:w3
(w1 ∈ [0.1, 1], w2 ∈ [0.1, 1], w3 ∈ [0.1, 1]), as shown in Formula (7).

k = w1xTxj + w2(xTxj)
d
+ w3exp

(
−
∥xi − xj∥

2γ2

)
(7)
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where w1, w2, w3 are the weight of the kernels. xT is the transpose of the training set,
and xj is the test set. d is a positive integer, k is a positive real number, both using
default parameters.

To obtain the original validation features using the multi-kernel SVM, the 25,200 features
along with their corresponding labels were sequentially validated. The process involved us-
ing the fixed threshold of 0.80 for screening. The definition of the classification performance
of the multi-kernel SVM is shown in Formula (8).

ACCk =
Nvk
NV

(8)

where ‘k’ represents the classification performance of frequent itemsets. Nvk denotes the
number of samples correctly classified by ‘k’ frequent itemsets in the validation set. NV is
the number of samples in the validation set.

Afterward, the concept of frequent itemsets was introduced, and the original features
were combined in pairs. This set was defined as candidate 2 (C2).

Since the classification performance of the features filtered in the first step was superior
compared to the feature set, the classification performance of the subsequent feature
combinations was guaranteed to be above 0.8. Therefore, we further filtered features based
on the average accuracy (ACC) of the Level 1 frequent itemset (L1) features, ensuring the
elimination of features with slightly lower classification performance than those in L1. The
threshold is defined as shown in Formula (9).

ACCThre = sum(ACCL1)/length(L1) (9)

where ACCL1 is the accuracy of every element in frequent itemset L1. length(L1) is
the number of frequent itemset L1. ACCThre is the threshold used for filtering out two
frequent itemsets.

After filtering, the obtained feature combinations were considered as the more signifi-
cant brain region gene pairs. This set of features was referred to as two frequent itemsets
and defined as L2. L2 was combined to form candidate itemsets C3 based on the principle
of Apriori knowledge.

The above steps were repeated until no new frequent itemsets could be generated.
Finally, we validated the classification performance of the obtained L1, L2, . . ., Ln fre-
quent itemsets using the leave-one-out validation method. The feature set with the best
classification performance was considered as the most important feature set.

2.4. Model Comparison

Besides the methods described in Section 2.3, the decision tree and Apriori algo-
rithm were used to construct the decision tree–Apriori model. The steps of the decision
tree–Apriori model are shown in Figure 3.

We used the 25,200 features obtained from Section 2.3 and the decision tree to calculate
the accuracy of every feature. Subsequently, we applied the fixed threshold of 0.80 to filter
out the features, and the resulting features were defined as L1. The features in L1, when
combined pairwise, formed the dataset C2, and the ACC of every feature pair in C2 were
calculated using the decision tree. Then, the average ACC of the L1 features was introduced
to select the brain region gene pairs with their corresponding ACC above the average ACC.
The resulting sets were defined as 2 frequent itemsets, named L2. The above steps were
repeated until no new frequent itemsets could be generated.

To demonstrate that the Apriori algorithm indeed enhanced the classification perfor-
mance of the multi-kernel SVM, the single-kernel SVM, dual-kernel SVM, multi-kernel
SVM, the single-kernel SVM with the Apriori algorithm and dual-kernel SVM with the
Apriori algorithm were used as control groups. The Classification and Regression Tree,
Random Forest, Bayes, Back Propagation Neural Network, Product-based Neural Net-
works, Convolutional Neural Network and Fully Connected Neural Network were also
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employed to select the optimal features. To ensure the credibility of the results, we used
the leave-one-out cross-validation method to obtain the results for all models.
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Figure 3. The steps of the decision tree–Apriori model.

3. Results

We used the SAD_HC as the dataset S. Initially, we divided the dataset S into training
and validation sets in a 7:3 ratio. Using a threshold of 0.8, we employed the multi-kernel
SVM to filter the original 25,200 features using the resulting weight 1:1:1. The curve of
weight selection is shown in Figure 4.
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Figure 4. The combination of w1, w2, w3 and their accuracy in five datasets. (a) The combination of
w1, w2, w3 and their accuracy in SEMCI_HC. (b) The combination of w1, w2, w3 and their accuracy in
SLMCI_HC. (c) The combination of w1, w2, w3 and their accuracy in SAD_HC. (d) The combination of
w1, w2, w3 and their accuracy in SAD_EMCI . (e) The combination of w1, w2, w3 and their accuracy in
SAD_LMCI .

Then, we obtained 239 features to generate the initial frequent itemset named L1.
We combined these 239 features in pairs to create a new set of features, resulting in
28,441 feature combinations. Since the selected features have accuracy rates above 0.8,
the accuracy of the combined features is also above 0.8. At this point, using 0.8 as the
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threshold would not be able to filter out the optimal features. Therefore, we use the average
accuracy of L1 as the new threshold. After the filtering process, the obtained features
were used as the dataset to generate the two frequent itemsets based on the definition
of frequent itemsets. We defined the two frequent itemsets as L2. The above steps were
repeated until no new frequent itemsets could be generated. The difference of Ln is shown
in Table 2. We tallied the features present in each frequent itemset and used these features
for leave-one-out cross-validation to determine which frequent itemset’s selected features
were the optimal ones. To ensure the credibility of the results, we validated our model
using four additional datasets. The results are shown in Figure 5.

Table 2. The association and difference between Ln. S = The initial dataset; ACCLn−1 = The accuracy
of every element in Ln − 1.

L1 L2 L3 L4 . . . Ln

Generate From S L1 L2 L3 . . . Ln−1
Accuracy Threshold 0.8 mean(ACCL1) mean(ACCL2) mean(ACCL3) . . . mean(ACCLn−1)
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Figure 5. The accuracy of leave-one-out cross-validation of the test set of all frequent itemsets in
5 datasets.

The L1 is generated from the initial dataset, and the accuracy threshold is 0.8. The
generation of L2 to Ln relies on the previous frequent itemset, and the accuracy threshold
is the average of the accuracy of the previous frequent itemset.

We observe fluctuating changes in the accuracy shown in Figure 5. The leave-one-
out cross-validation accuracy of L1 is 88.9%, while the accuracy of L2 improves to 90.2%.
However, the accuracy of L3 decreases to 86%, and the accuracy of L4 increases again to
90.4%. L5 has the lowest accuracy, declining to 80%. This indicates that the initial screening
of L1 retained most of the outstanding features. After L2 filtering, some features with
poor classification performance were eliminated, leading to an accuracy improvement. The
decrease in accuracy for L3 may be due to the retention of features with lower classification
performance during the generation of L3 while eliminating features with better classification
performance, which is also the case for L5. The increase in accuracy for L4 suggests that
during the generation of L4, some features with poor classification performance were
eliminated once again. We also observe that the highest accuracy was achieved in the
AD-EMCI group with L4, reaching 91.45%. Following that, the AD-LMCI group with
L2 and the AD-HC group with L4 achieve accuracies of 91.2% and 90.4%, respectively.
In the five sets of data, as the number of features decreases, good features are selected
while poor features are discarded. This may be the reason for the increase in accuracy
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and is the purpose of integrating the prior algorithm. The accuracies for the EMCI-HC
and LMCI-HC groups are slightly lower, at 87.2% and 83.8%, respectively. This could be
due to the smaller differences between the EMCI group and HC group, resulting in lower
accuracy. On the other hand, the larger differences between the data in other groups led to
better classification performance. Considering the conditions of five datasets, the proposed
method can obtain the optimal feature set after filtering in one of the frequent itemsets.

We also employed the single-kernel SVM, dual-kernel SVM and the multi-kernel SVM
to select the optimal features. The curve of weight selection of dual-kernel SVM in SAD_HC
is shown in Figure 6. The comparison results using leave-one-out cross-validation with our
model are shown in Figure 7. The F1 score, recall and precision are presented in Table 3.
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Figure 6. The curve of weight selection of dual-kernel SVM in SAD_HC. (a) The combination of
w1, w3 and their accuracy in SAD_HC. (b) The combination of w2, w3 and their accuracy in SAD_HC.
(c) The combination of w1, w2 and their accuracy in SAD_HC.
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Figure 7. The comparison with other methods in SAD_HC. DT = Decision Tree; PNN = Product-based
Neural Network; BPNN = Back-Propagation Neural Network; CART = Classification and Regression
Tree; CNN = Convolutional Neural Network; FCNN = Fully Connected Neural Network.
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Table 3. The F1 score, recall and precision of the 10 independent validation experiments in
test set of SAD_HC. The bold format is the model proposed in this study. DT = Decision Tree;
PNN = Product-based Neural Network; BPNN = Back-Propagation Neural Network; CART = Clas-
sification and Regression Tree; CNN = Convolutional Neural Network; FCNN = Fully Connected
Neural Network.

Model Accuracy F1 Score Recall Precision

LINEAR 76.25% ± 2.64% 74.8% ± 4.64% 79% ± 6.46% 71.8% ± 6.94%
POLY 76.88% ± 3.02% 74.8% ± 3.91% 79.6% ± 5.52% 71.6% ± 7.52%
RBF 78.13% ± 3.29% 77.6% ± 4.4% 81.8% ± 6.43% 74.8% ± 6.96%

LINEAR-POLY 76.25% ± 2.64% 75.6% ± 4.45% 81.9% ± 6.82% 71% ± 6.8%
LINEAR-RBF 76.88% ± 3.02% 74.9% ± 4.15% 77.3% ± 5.76% 73% ± 4.03%

POLY-RBF 76.88% ± 3.02% 76.5% ± 3.37% 76.8% ± 4.61% 76.4% ± 3.75%
MULTI-KERNEL 76.88% ± 4.22% 76.5% ± 4.53% 79.9% ± 6.12% 74.2% ± 5.07%

OUR MODEL 90.20% ± 1.54% 93.20% ± 1.08% 93.30% ± 1.19% 93.50% ± 1.02%
CART 84.44% ± 2.34% 82.2% ± 3.46% 82% ± 5.03% 83% ± 5.08%

RANDOM FOREST 84.44% ± 2.34% 81.8% ± 3.79% 83.3% ± 4.45% 80.8% ± 4.92%
BAYES 85% ± 2.68% 84.9% ± 2.92% 85.2% ± 2.82% 84.9% ± 3.07%
BPNN 72.94% ± 4.11% 76.5% ± 3.72% 82.2% ± 3.71% 71.4% ± 4.2%
PNN 82.94% ± 1.86% 84.1% ± 1.91% 86.6% ± 2.27% 81.8% ± 1.87%

APRIORI+LINEAR 86.6% ± 3.47% 90.6% ± 2.41% 91.5% ± 2.17% 90.4% ± 2.46%
APRIORI+POLY 83.4% ± 3.69% 88.7% ± 2.45% 88.9% ± 2.64% 89% ± 2.49%
APRIORI+RBF 87.8% ± 3.19% 91.3% ± 2.16% 92.1% ± 2.08% 91.3% ± 2.16%

APRIORI+LINEAR-POLY 82.1% ± 4.79% 85.5% ± 4.33% 85.5% ± 4.14% 85.7% ± 4.3%
APRIORI+LINEAR-RBF 88.6% ± 2.84% 89.1% ± 2.56% 89.9% ± 2.51% 88.9% ± 2.81%

APRIORI+POLY-RBF 82% ± 3.74% 87.7% ± 2.71% 88.2% ± 2.57% 87.6% ± 2.59%
APRIORI+DT 94.57% ± 0.78% 95.6% ± 0.52% 95.6% ± 0.52% 96.5% ± 0.53%

CNN(Overfitting) 68.03% ± 1.33% 26% ± 0% 18% ± 0% 50% ± 0%
FCNN(Overfitting) 73.09% ± 1.15% 31% ± 0% 22% ± 0% 50% ± 0%

We observe that our model had the highest accuracy, and the accuracy of the dual-
kernel SVM is generally higher than that of the single-kernel SVM. This suggests that under
the leave-one-out cross-validation method, the features selected by the traditional SVM did
not perform well in classification. In contrast, the features selected by our model exhibited
significantly better classification performance than the traditional SVM.

The receiver operating characteristic (ROC) curve of the best accuracy in each dataset
is shown in Figure 8. The lowest AUC value is 0.754 in EMCI-HC dataset. The AUC
values of other datasets are all above 0.86, while the best AUC value is 0.906 in AD-EMCI
dataset. The model utilized on the AD-LMCI dataset exhibits the strongest capability in
distinguishing between AD and LMCI. However, due to the minimal differences between
EMCI and HC, its performance is poorer on the EMCI-HC dataset, consistent with the
accuracy results.

Similarly, we also conducted comparisons in these datasets, and the results are pre-
sented in Figure 9.

We can observe that in all five datasets, the SVM model integrated with the Apriori
algorithm and the decision tree model integrated with the Apriori algorithm performed the
best, achieving the highest accuracy, of 91.45% and 94.9%. The dual-kernel SVM integrated
with the Apriori algorithm achieved an accuracy of 88%. Additionally, its stability across
five datasets was higher than that of the traditional SVM. In contrast, the highest accuracy
achieved by the traditional SVM was 87.5%. This indicates that the introduction of the
Apriori algorithm enables SVM to achieve higher accuracy and select more important
features. However, due to the limited sample size of only 121, and the fusion of imaging
and genetic data, there are insufficient data. Consequently, overfitting occurred during the
training of the deep learning models.
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Figure 8. The ROC curve of the best accuracy in each dataset. The dashed line represents the
performance of a random classifier.
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Figure 9. The comparison with other methods in 5 datasets. DT = Decision Tree; PNN = Product-
based Neural Network; BPNN = Back-Propagation Neural Network; CART = Classification and
Regression Tree; CNN = Convolutional Neural Network; FCNN = Fully Connected Neural Network.

To verify the stability of our model, we conducted 10 independent validation experi-
ments on five datasets. The results are presented in Figure 10, and the F1 score, recall and
precision are presented in Table 4.
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Figure 10. The 10 independent validation experiments accuracy of leave-one-out cross-validation
of the test set in 5 datasets. HC = Healthy Control; EMCI = Early Mild Cognitive Impairment;
LMCI = Late Mild Cognitive Impairment; AD = Alzheimer’s Disease.

Table 4. The F1 score, recall and precision of the 10 independent validation experiments in test set.
HC = Healthy Control; EMCI = Early Mild Cognitive Impairment; LMCI = Late Mild Cognitive
Impairment; AD = Alzheimer’s Disease.

Group Accuracy F1 Score Recall Precision

EMCI-HC 81.88% ± 1.02% 83.30% ± 0.78% 83.60% ± 0.80% 83.30% ± 0.78%
LMCI-HC 88.97% ± 0.97% 91.60% ± 0.80% 92.80% ± 0.87% 90.80% ± 0.60%

AD-HC 89.73% ± 0.98% 92.20% ± 0.75% 94.00% ± 0.63% 91.10% ± 0.83%
AD-EMCI 90.20% ± 1.54% 93.20% ± 1.08% 93.30% ± 1.19% 93.50% ± 1.02%
AD-LMCI 92.13% ± 1.27% 94.70% ± 1.00% 94.70% ± 1.00% 94.70% ± 1.00%

We observed that in the 10 independent experiments, our model achieved the highest
accuracy of 93.9%. Moreover, across the five datasets, the difference in accuracy ranged
from 3% to 3.9%. This indicates that our model demonstrates stable performance across
different datasets.

4. Discussion

In this study, we proposed the multi-kernel SVM-Apriori model to mine the important
features that performed well in classifying AD patients and healthy control. We compared
our model with the traditional SVM and validated its stability on five different datasets.
The results showed that the proposed multi-kernel SVM-Apriori model exhibited excellent
classification performance and stability.

By leveraging the prior properties of frequent itemsets, the essence of the Apriori
algorithm lies in discovering frequent itemsets through a layer-by-layer search. In this
paper, we combine this algorithm with multi-kernel SVM, utilizing the advantages of
multi-kernel SVM in binary classification performance with small sample datasets. We
set the average classification accuracy at each stage as the minimum support threshold.
Then, we scan the dataset to calculate the support of the next candidate itemset, which
is defined as the SVM classification accuracy, and compare it with the minimum support
threshold. Itemsets with support exceeding the threshold are considered as N + 1 item
frequent itemsets. Finally, we obtain the accuracy of each set of frequent itemsets through
leave-one-out validation.
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To ensure the reliability of the computational results, we used the leave-one-out cross-
validation method for accuracy calculations in our model, and we also applied the same
method in the control group. By analyzing Figure 5, we found that our model’s highest
accuracy is in the AD-EMCI group, reaching 93%, while the highest accuracy in the control
group for the AD-HC group is 90.4%. This may be because there is a significant difference
between AD and EMCI, and the fusion of brain region and gene features further amplifies
this difference, resulting in all models achieving good accuracy in the AD-EMCI group.
In the 10 independent experiments, we observe that the highest accuracy is in AD-LMCI
group, reaching 93.9%. The difference in the AD-EMCI group is 0.3, while the difference
in the AD-LMCI group is 0.39, indicating that the results of the AD-EMCI group are more
stable. The confusion matrices of the five datasets are shown in Figure 11. We also used the
time series information to calculate the variance of each brain region in the AD-LMCI group,
AD-EMCI group and AD-HC group. The variance of hippocampus, parahippocampal
gyrus and amygdala in AD-EMCI group and AD-HC group are shown in Table 5. We
found that in 90 brain regions, the AD-EMCI group exhibited higher variance in 64 brain
regions compared to the AD-HC group. This indicates that the imaging data in these
64 brain regions have greater differences, which may contribute to the higher accuracy of
the AD-EMCI group compared to the AD-HC group. Additionally, in the AD-HC and AD-
LMCI groups, our model’s accuracy also exceeded 90%, indicating significant differences
in features between the AD group and the other three groups, which contributes to the
excellent classification performance.
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Figure 11. The confusion matrices of 5 datasets. (a) The confusion matrices of SEMCI_HC. (b) The
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Table 5. The variance of hippocampus, parahippocampal gyrus and amygdala in AD-EMCI group
and AD-HC group. HC = Healthy Control; EMCI = Early Mild Cognitive Impairment; LMCI = Late
Mild Cognitive Impairment; AD = Alzheimer’s Disease.

Brain Region AD-EMCI AD-HC

Left hippocampus 0.178128395 0.001062739
Right hippocampus 0.13044139 0.055262965

Left parahippocampal gyrus 0.080443747 0.034482065
Right parahippocampal gyrus 0.045045533 0.008222377

Left amydala 0.11497812 0.044599828
Right amydala 0.089006046 0.117985895

In the EMCI-HC group, our model’s accuracy reached 83.8%. Although lower than
the accuracy of the other four groups, it still surpassed the control group’s accuracy, with
a maximum difference of 14.6%. This demonstrates that even though there are small
differences in features between the EMCI and HC groups, the introduction of the Apriori
algorithm helped select important features, leading to the SVM model with excellent
classification performance when fused with the Apriori algorithm.

The brain region gene pairs that effectively classify AD and HC might represent
potential pathogenic factors of AD. Our research detected some abnormal subregions and
pathogenic genes associated with AD, such as the amygdala, BIN1, RPN2 and IL15. We
calculated the frequency of the identified genes and brain regions. Then, we selected the top
genes and brain regions with a frequency above two to count their relation. The results are
shown in Figure 12 (https://hiplot.com.cn/basic?lang=zh_cn, accessed on 29 April 2023).

Consistent with the results in Reference [27], the amygdala has been identified as
an important brain region, and our proposed method achieved an accuracy of 93.9%
after leave-one-out validation. The amygdala played an important role in AD [28–30].
Feng et al. [31] explored the microstructural changes in the amygdala of AD patients
and identified the radiological characteristics of the amygdala as potential biomarkers for
diagnosing AD. Hu et al. [32] performed GWAS using 1034 and 1186 participants and
found multi SNPs at BIN1 associated with AD. Other studies showed that the genotype
patterns at BIN1 were associated with memory performance [33] and identifying new
SNPs at BIN1 [34,35]. Suzuki et al. [36] investigated the cerebrovascular-specific molecular
mechanisms of Alzheimer’s disease (AD) and discovered that in the endothelial cells of the
blood vessels in AD brain, there was an upregulation of protein (RPN2) associated with
protein processing and N-glycosylation in the endoplasmic reticulum. This upregulation
was correlated with the expression of ribosomal proteins. The RPN1, RPN2, DDOST, and
STT3A formed the oligosaccharyltransferase complex, which was a membrane protein
complex [37]. RPN1 and RPN2 could promote N-glycosylation [38,39]. This indicated
that in the vascular endothelium of AD brains, the process of adding glycan chains to
nascent polypeptides in the endoplasmic reticulum was enhanced [36]. Rentzos et al. [40]
studied the effect of IL15 and AD and found that the levels of IL-15 in the cerebrospinal
fluid of Alzheimer’s disease are significantly elevated and show a significant positive
correlation with the age of onset. Asby et al. [41] found IL-15 was raised in AD patients
and with systemic infection. Janelidze et al. [42] proved that IL-15 was raised in CSF
and associated with Aβ pathology. In our experiments, we also discovered BIN1, RPN2,
and IL15, achieving excellent accuracy, F1 score, recall, and precision. This indicates that
not only does our experiment perform well in AD classification, but it also demonstrates
outstanding performance in detecting biomarkers related to AD.

https://hiplot.com.cn/basic?lang=zh_cn
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5. Conclusions

In this study, we proposed a novel Multi-Kernel SVM–Apriori Model to extract the
important features fusing information by brain regions and genes. Firstly, we conducted
brain region and gene association analysis using the information from dual-gene chains.
Our method effectively fused imaging and gene information, providing excellent candidate
features for subsequent analysis. Additionally, we proposed the Multi Kernel SVM-Apriori
Model to extract fusion features with significant contributions to AD classification. Finally,
by combining feature fusion and the Multi-Kernel SVM–Apriori Model, we established an
AD diagnostic framework and detected abnormal brain regions and pathogenic genes in
AD, such as the amygdala, BIN1, RPN2, and IL15. However, our work also has some limita-
tions. Our study may benefit from utilizing more diverse datasets encompassing various
demographics, disease stages, and ethnicities. Expanding the dataset could enhance the
generalizability and robustness of our proposed model. Although our method effectively
fused imaging and gene information, future studies could explore more advanced feature
selection techniques to identify the most informative and discriminative features for AD
classification, opening up new research directions for the diagnosis and treatment of AD.
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